欢迎各位兄弟 发布技术文章

这里的技术是共享的

You are here

谈谈 TCP 的 TIME_WAIT 有大用

谈谈 TCP 的 TIME_WAIT

由来


最近有同事在用 ab 进行服务压测,到 QPS 瓶颈后怀疑是起压机的问题,来跟我借测试机,于是我就趁机分析了一波起压机可能成为压测瓶颈的可能,除了网络 I/O、机器性能外,还考虑到了网络协议的问题。

当然本文的主角并不是压测,后来分析证明同事果然还是想多了,瓶颈是在服务端。

分析起压机瓶颈的过程中,对于 TCP TIME_WAIT 状态的一个猜想引起了我的兴趣。由于之前排查问题时,简单地接触过这个状态,但并未深入了解,于是决定抽时间分析一下,拆解一下我的猜想。

转载随意,文章会持续修订,请注明来源地址:https://zhenbianshu.github.io 。

TCP 的状态转换


我们都知道 TCP 的三次握手,四次挥手,说来简单,但在不稳定的物理网络中,每一个动作都有可能失败,为了保证数据被有效传输,TCP 的具体实现中也加入了很多对这些异常状况的处理。

状态分析

先用一张图来回想一下 TCP 的状态转换。

一眼看上去,这么多种状态,各个方向的连线,让人感觉有点懵。但细细分析下来,还是有理可循的。

首先,整个图可以被划分为三个部分,即上半部分建连过程,左下部分主动关闭连接过程和右下部分被动关闭连接过程。

再来看各个部分:建连过程就是我们熟悉的三次握手,只是这张图上多了一个服务端会存在的 LISTEN 状态;而主动关闭连接和被动关闭连接,都是四次挥手的过程。

查看连接状态

在 Linux 上,我们常用 netstat 来查看网络连接的状态。当然我们还可以使用更快捷高效的 ss (Socket Statistics) 来替代 netstat。

这两个工具都会列出此时机器上的 socket 连接的状态,通过简单的统计就可以分析出此时服务器的网络状态。

TIME_WAIT


定义

我们从上面的图中可以看出来,当 TCP 连接主动关闭时,都会经过 TIME_WAIT 状态。而且我们在机器上 curl 一个 url 创建一个 TCP 连接后,使用 ss 等工具可以在一定时长内持续观察到这个连续处于 TIME_WAIT 状态。

所以TIME_WAIT 是这么一种状态:TCP 四次握手结束后,连接双方都不再交换消息,但主动关闭的一方保持这个连接在一段时间内不可用。

那么,保持这么一个状态有什么用呢?

原因

上文中提到过,对于复杂的网络状态,TCP 的实现提出了多种应对措施,TIME_WAIT 状态的提出就是为了应对其中一种异常状况。

为了理解 TIME_WAIT 状态的必要性,我们先来假设没有这么一种状态会导致的问题。暂以 A、B 来代指 TCP 连接的两端,A 为主动关闭的一端。

  • 四次挥手中,A 发 FIN, B 响应 ACK,B 再发 FIN,A 响应 ACK 实现连接的关闭。而如果 A 响应的 ACK 包丢失,B 会以为 A 没有收到自己的关闭请求,然后会重试向 A 再发 FIN 包。

    如果没有 TIME_WAIT 状态,A 不再保存这个连接的信息,收到一个不存在的连接的包,A 会响应 RST 包,导致 B 端异常响应。

    此时, TIME_WAIT 是为了保证全双工的 TCP 连接正常终止。

  • 我们还知道,TCP 下的 IP 层协议是无法保证包传输的先后顺序的。如果双方挥手之后,一个网络四元组(src/dst ip/port)被回收,而此时网络中还有一个迟到的数据包没有被 B 接收,A 应用程序又立刻使用了同样的四元组再创建了一个新的连接后,这个迟到的数据包才到达 B,那么这个数据包就会让 B 以为是 A 刚发过来的。

    此时, TIME_WAIT 的存在是为了保证网络中迷失的数据包正常过期。

由以上两个原因,TIME_WAIT 状态的存在是非常有意义的。

时长的确定

由原因来推实现,TIME_WAIT 状态的保持时长也就可以理解了。确定 TIME_WAIT 的时长主要考虑上文的第二种情况,保证关闭连接后这个连接在网络中的所有数据包都过期。

说到过期时间,不得不提另一个概念: 最大分段寿命(MSL, Maximum Segment Lifetime),它表示一个 TCP 分段可以存在于互联网系统中的最大时间,由 TCP 的实现,超出这个寿命的分片都会被丢弃。

TIME_WAIT 状态由主动关闭的 A 来保持,那么我们来考虑对于 A 来说,可能接到上一个连接的数据包的最大时长:A 刚发出的数据包,能保持 MSL 时长的寿命,它到了 B 端后,B 端由于关闭连接了,会响应 RST 包,这个 RST 包最长也会在 MSL 时长后到达 A,那么 A 端只要保持 TIME_WAIT 到达 2MS 就能保证网络中这个连接的包都会消失。

MSL 的时长被 RFC 定义为 2分钟,但在不同的 unix 实现上,这个值不并确定,我们常用的 centOS 上,它被定义为 30s,我们可以通过 /proc/sys/net/ipv4/tcp_fin_timeout 这个文件查看和修改这个值。

ab 的”奇怪”表现


猜想

由上文,我们知道由于 TIME_WAIT 的存在,每个连接被主动关闭后,这个连接就要保留 2MSL(60s) 时长,一个网络四元组也要被冻结 60s。而我们机器默认可被分配的端口号约有 30000 个(可通过 /proc/sys/net/ipv4/ip_local_port_range文件查看)。

那么如果我们使用 curl 对服务器请求时,作为客户端,都要使用本机的一个端口号,所有的端口号分配到 60s 内,每秒就要控制在 500 QPS,再多了,系统就无法再分配端口号了。

可是在使用 ab 进行压测时时,以每秒 4000 的 QPS 运行几分钟,起压机照样正常工作,使用 ss 查看连接详情时,发现一个 TIME_WAIT 状态的连接都没有。

分析

一开始我以为是 ab 使用了连接复用等技术,仔细查看了 ss 的输出发现本地端口号一直在变,到底是怎么回事呢?

于是,我在一台测试机启动了一个简单的服务,端口号 8090,然后在另一台机器上起压,并同时用 tcpdump 抓包。

结果发现,第一个 FIN 包都是由服务器发送的,即 ab 不会主动关闭连接。

登上服务器一看,果然,有大量的 TIME_WAIT 状态的连接。

但是由于服务器监听的端口会复用,这些 TIME_WAIT 状态的连接并不会对服务器造成太大影响,只是会占用一些系统资源。

小结


当然,高并发情况下,太多的 TIME_WAIT 也会给服务器造成很大的压力,毕竟维护这么多 socket 也是要消耗资源的,关于如何解决 TIME_WAIT 过多的问题,可以看 tcp短连接TIME_WAIT问题解决方法大全(1)——高屋建瓴

多了解原理遇到问题才能更快地找到根源解决,网络相关的知识还要继续巩固啊。

关于本文有什么疑问可以在下面留言交流,如果您觉得本文对您有帮助,欢迎关注我的 微博 或 GitHub 。您也可以在我的 博客REPO 右上角点击 Watch 并选择 Releases only 项来 订阅 我的博客,有新文章发布会第一时间通知您。

分类: WEB
标签: TCPTCP/IP网络TIME_WAIT


来自  https://www.cnblogs.com/zhenbianshu/p/10637964.html


TCP中的TIME_WAIT

0.089字数 1,506阅读 1,048


为什么要有TIME_WAIT?

TIME_WAIT是TCP主动关闭连接一方的一个状态,TCP断开连接的时序图如下:


image.png

当主动断开连接的一方(Initiator)发送FIN包给对方,且对方回复了ACK+FIN,然后Initiator回复了ACK后就进入TIME_WAIT状态,一直将持续2MSL后进入CLOSED状态。

那么,我们来看如果Initiator不进入TIME_WAIT状态而是直接进入CLOSED状态会有什么问题?

考虑这种情况,服务器运行在80端口,客户端使用的连接端口是12306,数据传输完毕后服务端主动关闭连接,但是没有进入TIME_WAIT,而是直接计入CLOSED了。这时,客户端又通过同样的端口12306与服务端建立了一个新的连接。假如上一个连接过程中网络出现了异常,导致了某个包重传并延时到达了服务端,这时服务端就无法区分这个包是上一个连接的还是这个连接的。所以,主动关闭连接一方要等待2MSL,然后才能CLOSE,保证连接中的IP包都要么传输完成,要么被丢弃了。


TIME_WAIT会带来什么问题

系统中TIME_WAIT的连接数很多,会导致什么问题呢?这要分别针对客户端和服务器端来看的。

首先,如果是客户端发起了连接,传输完数据然后主动关闭了连接,这时这个连接在客户端就会处于TIMEWAIT状态,同时占用了一个本地端口。如果客户端使用短连接请求服务端的资源或者服务,客户端上将有大量的连接处于TIMEWAIT状态,占用大量的本地端口。最坏的情况就是,本地端口都被用光了,这时将无法再建立新的连接。

针对这种情况,对应的解决办法有2个:

  1. 使用长连接,如果是http,可以使用keepalive

  2. 增加本地端口可用的范围,比如Linux中调整内核参数:net.ipv4.ip_local_port_range

对于服务器而已,由于服务器是被动等待客户端建立连接的,因此即使服务器端有很多TIME_WAIT状态的连接,也不存在本地端口耗尽的问题。大量的TIME_WAIT的连接会导致如下问题:

  1. 内存占用:因为每一个TCP连接都会有占用一些内存。

  2. 在某些Linux版本上可能导致性能问题,因为数据包到达服务器的时候,内核需要知道数据包是属于哪个TCP连接的,在某些Linux版本上可能会遍历所有的TCP连接,所以大量TIME_WAIT的连接将导致性能问题。不过,现在的内核都对此进行了优化(待确认)。

那系统中处于TIME_WAIT状态的TCP连接数有上限吗?有的,这是通过net.ipv4.tcp_max_tw_buckets参数来控制的,默认值为180000。当超过了以后,系统就开始关闭这些连接,同时会在系统日志中打印日志。此时,可以将这个值调大一些,从这个参数的默认值就可以看出,对服务器而已,处于TIME_WAIT状态的TCP连接多点也没有什么关系,只是多占用些内存而已。


常见的TIMEWAIT错误参数

如果用TIME_WAIT作为关键字到网络上搜索,会得到很多关于如何减少TIME_WAIT数量的建议,其中有些建议是有错误或者有风险的,列举如下:

  • net.ipv4.tcp_syncookies = 1,这个参数表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击。这个和TIME_WAIT没有什么关系。

  • net.ipv4.tcp_tw_reuse = 1,这个参数表示重用TIME_WAIT的连接,重用的条件是TCP的4元组(源地址、源端口、目标地址、目标端口)要完全一致,而且开启了net.ipv4.tcp_timestamps,且新建立连接的使用的timestamp要大于当前连接的timestamp。所以,开启了这个参数对减少TIME_WAIT的TCP连接有点用,但条件太苛刻,所以实际用处不大。

  • net.ipv4.tcp_tw_recycle = 1,这个参数表示开启TIME_WAIT回收功能,开启了这个参数后,将大大减小TIME_WAIT进入CLOSED状态的时间。但是开启了这个功能了风险很大,可能会导致处于NAT后面的某些客户端无法建立连接。因为,开启这个功能后,它要求来自同一个IP的TCP新连接的timestamp要大于之前连接的timestamp。


TIMEWAIT的“正确”处理方法

简单总结一下我对于TIME_WAIT状态TCP连接的理解和处理方法:

  1. TIME_WAIT状态的设计初衷是为了保护我们的。服务端不必担心系统中有几w个处于TIME_WAIT状态的TCP连接。可以调大net.ipv4.tcp_max_tw_buckets这个参数。

  2. 使用短连接的客户端,需要关注TIME_WAIT状态的TCP连接,建议是采用长连接,同时调节参数net.ipv4.ip_local_port_range,增加本地可用端口的范围。

  3. 可以开启net.ipv4.tcp_tw_reuse这个参数,但是实际用处有限。

  4. 不要开启net.ipv4.tcp_tw_recycle这个参数,它带来的问题比用处大。

  5. 某些Linux的发行版可以调节TIME_WAIT到CLOSED的等待时间(比如Ali的Linux内核提供了参数net.ipv4.tcp_tw_timeout ),可以稍微调小一点这个参数。

来自  https://www.jianshu.com/p/c65958b5d903

普通分类: