欢迎各位兄弟 发布技术文章

这里的技术是共享的

You are here

深刻理解Python中的元类(metaclass)

shiping1 的头像

译注:这是一篇在Stack overflow上 很热的帖子。提问者自称已经掌握了有关Python OOP编程中的各种概念,但始终觉得元类(metaclass)难以理解。他知道这肯定和自省有关,但仍然觉得不太明白,希望大家可以给出一些实际的例子 和代码片段以帮助理解,以及在什么情况下需要进行元编程。于是e-satis同学给出了神一般的回复,该回复获得了985点的赞同点数,更有人评论说这段 回复应该加入到Python的官方文档中去。而e-satis同学本人在Stack Overflow中的声望积分也高达64271分。以下就是这篇精彩的回复(提示:非常长)

类也是对象

在理解元类之前,你需要先掌握Python中的类。Python中类的概念借鉴于Smalltalk,这显得有些奇特。在大多数编程语言中,类就是一组用来描述如何生成一个对象的代码段。在Python中这一点仍然成立:

1
2
3
4
5
6
>>> class ObjectCreator(object):
…       pass
>>> my_object = ObjectCreator()
>>> print my_object
<__main__.ObjectCreator object at 0x8974f2c>

但是,Python中的类还远不止如此。类同样也是一种对象。是的,没错,就是对象。只要你使用关键字class,Python解释器在执行的时候就会创建一个对象。下面的代码段:

1
2
3
>>> class ObjectCreator(object):
…       pass

将在内存中创建一个对象,名字就是ObjectCreator。这个对象(类)自身拥有创建对象(类实例)的能力,而这就是为什么它是一个类的原因。但是,它的本质仍然是一个对象,于是乎你可以对它做如下的操作:

1)   你可以将它赋值给一个变量

2)   你可以拷贝它

3)   你可以为它增加属性

4)   你可以将它作为函数参数进行传递

下面是示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> print ObjectCreator     # 你可以打印一个类,因为它其实也是一个对象
<class '__main__.ObjectCreator'>
>>> def echo(o):
…       print o
>>> echo(ObjectCreator)                 # 你可以将类做为参数传给函数
<class '__main__.ObjectCreator'>
>>> print hasattr(ObjectCreator, 'new_attribute')
Fasle
>>> ObjectCreator.new_attribute = 'foo' #  你可以为类增加属性
>>> print hasattr(ObjectCreator, 'new_attribute')
True
>>> print ObjectCreator.new_attribute
foo
>>> ObjectCreatorMirror = ObjectCreator # 你可以将类赋值给一个变量
>>> print ObjectCreatorMirror()
<__main__.ObjectCreator object at 0x8997b4c>

 

动态地创建类

因为类也是对象,你可以在运行时动态的创建它们,就像其他任何对象一样。首先,你可以在函数中创建类,使用class关键字即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> def choose_class(name):
…       if name == 'foo':
…           class Foo(object):
…               pass
…           return Foo     # 返回的是类,不是类的实例
…       else:
…           class Bar(object):
…               pass
…           return Bar
>>> MyClass = choose_class('foo')
>>> print MyClass              # 函数返回的是类,不是类的实例
<class '__main__'.Foo>
>>> print MyClass()            # 你可以通过这个类创建类实例,也就是对象
<__main__.Foo object at 0x89c6d4c>

但这还不够动态,因为你仍然需要自己编写整个类的代码。由于类也是对象,所以它们必须是通过什么东西来生成的才对。当你使用class关键字 时,Python解释器自动创建这个对象。但就和Python中的大多数事情一样,Python仍然提供给你手动处理的方法。还记得内建函数type吗? 这个古老但强大的函数能够让你知道一个对象的类型是什么,就像这样:

1
2
3
4
5
6
7
8
>>> print type(1)
<type 'int'>
>>> print type("1")
<type 'str'>
>>> print type(ObjectCreator)
<type 'type'>
>>> print type(ObjectCreator())
<class '__main__.ObjectCreator'>

这里,type有一种完全不同的能力,它也能动态的创建类。type可以接受一个类的描述作为参数,然后返回一个类。(我知道,根据传入参数的不同,同一个函数拥有两种完全不同的用法是一件很傻的事情,但这在Python中是为了保持向后兼容性)

type可以像这样工作:

1
type(类名, 父类的元组(针对继承的情况,可以为空),包含属性的字典(名称和值))

比如下面的代码:

1
2
>>> class MyShinyClass(object):
…       pass

可以手动像这样创建:

1
2
3
4
5
>>> MyShinyClass = type('MyShinyClass', (), {})  # 返回一个类对象
>>> print MyShinyClass
<class '__main__.MyShinyClass'>
>>> print MyShinyClass()  #  创建一个该类的实例
<__main__.MyShinyClass object at 0x8997cec>

你会发现我们使用“MyShinyClass”作为类名,并且也可以把它当做一个变量来作为类的引用。类和变量是不同的,这里没有任何理由把事情弄的复杂。

type 接受一个字典来为类定义属性,因此

1
2
>>> class Foo(object):
…       bar = True

可以翻译为:

1
>>> Foo = type('Foo', (), {'bar':True})

并且可以将Foo当成一个普通的类一样使用:

1
2
3
4
5
6
7
8
9
>>> print Foo
<class '__main__.Foo'>
>>> print Foo.bar
True
>>> f = Foo()
>>> print f
<__main__.Foo object at 0x8a9b84c>
>>> print f.bar
True

当然,你可以向这个类继承,所以,如下的代码:

1
2
>>> class FooChild(Foo):
…       pass

就可以写成:

1
2
3
4
5
>>> FooChild = type('FooChild', (Foo,),{})
>>> print FooChild
<class '__main__.FooChild'>
>>> print FooChild.bar   # bar属性是由Foo继承而来
True

最终你会希望为你的类增加方法。只需要定义一个有着恰当签名的函数并将其作为属性赋值就可以了。

1
2
3
4
5
6
7
8
9
10
11
>>> def echo_bar(self):
…       print self.bar
>>> FooChild = type('FooChild', (Foo,), {'echo_bar': echo_bar})
>>> hasattr(Foo, 'echo_bar')
False
>>> hasattr(FooChild, 'echo_bar')
True
>>> my_foo = FooChild()
>>> my_foo.echo_bar()
True

你可以看到,在Python中,类也是对象,你可以动态的创建类。这就是当你使用关键字class时Python在幕后做的事情,而这就是通过元类来实现的。

 

到底什么是元类(终于到主题了)

元类就是用来创建类的“东西”。你创建类就是为了创建类的实例对象,不是吗?但是我们已经学习到了Python中的类也是对象。好吧,元类就是用来创建这些类(对象)的,元类就是类的类,你可以这样理解 为:

1
2
MyClass = MetaClass()
MyObject = MyClass()

你已经看到了type可以让你像这样做:

1
MyClass = type('MyClass', (), {})

这是因为函数type实际上是一个元类。type就是Python在背 后用来创建所有类的元类。现在你想知道那为什么type会全部采用小写形式而不是Type呢?好吧,我猜这是为了和str保持一致性,str是用来创建字 符串对象的类,而int是用来创建整数对象的类。type就是创建类对象的类。你可以通过检查__class__属性来看到这一点。Python中所有的 东西,注意,我是指所有的东西——都是对象。这包括整数、字符串、函数以及类。它们全部都是对象,而且它们都是从一个类创建而来。

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> age = 35
>>> age.__class__
<type 'int'>
>>> name = 'bob'
>>> name.__class__
<type 'str'>
>>> def foo(): pass
>>>foo.__class__
<type 'function'>
>>> class Bar(object): pass
>>> b = Bar()
>>> b.__class__
<class '__main__.Bar'>

现在,对于任何一个__class__的__class__属性又是什么呢?

1
2
3
4
5
6
7
8
>>> a.__class__.__class__
<type 'type'>
>>> age.__class__.__class__
<type 'type'>
>>> foo.__class__.__class__
<type 'type'>
>>> b.__class__.__class__
<type 'type'>

因此,元类就是创建类这种对象的东西。如果你喜欢的话,可以把元类称为“类工厂”(不要和工厂类搞混了:D) type就是Python的内建元类,当然了,你也可以创建自己的元类。

 

__metaclass__属性

你可以在写一个类的时候为其添加__metaclass__属性。

1
2
3
class Foo(object):
    __metaclass__ = something…
[…]

如果你这么做了,Python就会用元类来创建类Foo。小心点,这里面有些技巧。你首先写下class Foo(object),但是类对象Foo还没有在内存中创建。Python会在类的定义中寻找__metaclass__属性,如果找到 了,Python就会用它来创建类Foo,如果没有找到,就会用内建的type来创建这个类。把下面这段话反复读几次。当你写如下代码时 :

1
2
class Foo(Bar):
    pass

Python做了如下的操作:

Foo中有__metaclass__这个属性吗?如果是,Python会在内存中通过__metaclass__创建一个名字为Foo的类对象 (我说的是类对象,请紧跟我的思路)。如果Python没有找到__metaclass__,它会继续在Bar(父类)中寻找__metaclass__ 属性,并尝试做和前面同样的操作。如果Python在任何父类中都找不到__metaclass__,它就会在模块层次中去寻找 __metaclass__,并尝试做同样的操作。如果还是找不到__metaclass__,Python就会用内置的type来创建这个类对象。

现在的问题就是,你可以在__metaclass__中放置些什么代码呢?答案就是:可以创建一个类的东西。那么什么可以用来创建一个类呢?type,或者任何使用到type或者子类化type的东东都可以。

 

自定义元类

元类的主要目的就是为了当创建类时能够自动地改变类。通常,你会为API做这样的事情,你希望可以创建符合当前上下文的类。假想一个很傻的例子,你 决定在你的模块里所有的类的属性都应该是大写形式。有好几种方法可以办到,但其中一种就是通过在模块级别设定__metaclass__。采用这种方法, 这个模块中的所有类都会通过这个元类来创建,我们只需要告诉元类把所有的属性都改成大写形式就万事大吉了。

幸运的是,__metaclass__实际上可以被任意调用,它并不需要是一个正式的类(我知道,某些名字里带有‘class’的东西并不需要是一个class,画画图理解下,这很有帮助)。所以,我们这里就先以一个简单的函数作为例子开始。

1
2
3
4
5
# 元类会自动将你通常传给‘type’的参数作为自己的参数传入
def upper_attr(future_class_name, future_class_parents, future_class_attr):
    '''返回一个类对象,将属性都转为大写形式'''
    #  选择所有不以'__'开头的属性
    attrs = ((name, value) for name, value in future_class_attr.items() if not name.startswith('__'))
1
2
3
4
5
6
7
8
9
10
11
    # 将它们转为大写形式
    uppercase_attr = dict((name.upper(), value) for name, value in attrs)
 
    # 通过'type'来做类对象的创建
    return type(future_class_name, future_class_parents, uppercase_attr)
 
__metaclass__ = upper_attr  #  这会作用到这个模块中的所有类
 
class Foo(object):
    # 我们也可以只在这里定义__metaclass__,这样就只会作用于这个类中
    bar = 'bip'
1
2
3
4
5
6
7
8
print hasattr(Foo, 'bar')
# 输出: False
print hasattr(Foo, 'BAR')
# 输出:True
 
f = Foo()
print f.BAR
# 输出:'bip'

现在让我们再做一次,这一次用一个真正的class来当做元类。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 请记住,'type'实际上是一个类,就像'str'和'int'一样
# 所以,你可以从type继承
class UpperAttrMetaClass(type):
    # __new__ 是在__init__之前被调用的特殊方法
    # __new__是用来创建对象并返回之的方法
    # 而__init__只是用来将传入的参数初始化给对象
    # 你很少用到__new__,除非你希望能够控制对象的创建
    # 这里,创建的对象是类,我们希望能够自定义它,所以我们这里改写__new__
    # 如果你希望的话,你也可以在__init__中做些事情
    # 还有一些高级的用法会涉及到改写__call__特殊方法,但是我们这里不用
    def __new__(upperattr_metaclass, future_class_name, future_class_parents, future_class_attr):
        attrs = ((name, value) for name, value in future_class_attr.items() if not name.startswith('__'))
        uppercase_attr = dict((name.upper(), value) for name, value in attrs)
        return type(future_class_name, future_class_parents, uppercase_attr)

但是,这种方式其实不是OOP。我们直接调用了type,而且我们没有改写父类的__new__方法。现在让我们这样去处理:

1
2
3
4
5
6
7
8
class UpperAttrMetaclass(type):
    def __new__(upperattr_metaclass, future_class_name, future_class_parents, future_class_attr):
        attrs = ((name, value) for name, value in future_class_attr.items() if not name.startswith('__'))
        uppercase_attr = dict((name.upper(), value) for name, value in attrs)
 
        # 复用type.__new__方法
        # 这就是基本的OOP编程,没什么魔法
        return type.__new__(upperattr_metaclass, future_class_name, future_class_parents, uppercase_attr)

你可能已经注意到了有个额外的参数upperattr_metaclass,这并没有什么特别的。类方法的第一个参数总是表示当前的实例,就像在普 通的类方法中的self参数一样。当然了,为了清晰起见,这里的名字我起的比较长。但是就像self一样,所有的参数都有它们的传统名称。因此,在真实的 产品代码中一个元类应该是像这样的:

1
2
3
4
5
class UpperAttrMetaclass(type):
    def __new__(cls, name, bases, dct):
        attrs = ((name, value) for name, value in dct.items() if not name.startswith('__')
        uppercase_attr  = dict((name.upper(), value) for name, value in attrs)
        return type.__new__(cls, name, bases, uppercase_attr)

如果使用super方法的话,我们还可以使它变得更清晰一些,这会缓解继承(是的,你可以拥有元类,从元类继承,从type继承)

1
2
3
4
5
class UpperAttrMetaclass(type):
    def __new__(cls, name, bases, dct):
        attrs = ((name, value) for name, value in dct.items() if not name.startswith('__'))
        uppercase_attr = dict((name.upper(), value) for name, value in attrs)
        return super(UpperAttrMetaclass, cls).__new__(cls, name, bases, uppercase_attr)

就是这样,除此之外,关于元类真的没有别的可说的了。使用到元类的代码 比较复杂,这背后的原因倒并不是因为元类本身,而是因为你通常会使用元类去做一些晦涩的事情,依赖于自省,控制继承等等。确实,用元类来搞些“黑暗魔法” 是特别有用的,因而会搞出些复杂的东西来。但就元类本身而言,它们其实是很简单的:

1)   拦截类的创建

2)   修改类

3)   返回修改之后的类

 

为什么要用metaclass类而不是函数?

由于__metaclass__可以接受任何可调用的对象,那为何还要使用类呢,因为很显然使用类会更加复杂啊?这里有好几个原因:

1)  意图会更加清晰。当你读到UpperAttrMetaclass(type)时,你知道接下来要发生什么。

2) 你可以使用OOP编程。元类可以从元类中继承而来,改写父类的方法。元类甚至还可以使用元类。

3)  你可以把代码组织的更好。当你使用元类的时候肯定不会是像我上面举的这种简单场景,通常都是针对比较复杂的问题。将多个方法归总到一个类中会很有帮助,也会使得代码更容易阅读。

4) 你可以使用__new__, __init__以及__call__这样的特殊方法。它们能帮你处理不同的任务。就算通常你可以把所有的东西都在__new__里处理掉,有些人还是觉得用__init__更舒服些。

5) 哇哦,这东西的名字是metaclass,肯定非善类,我要小心!

 

究竟为什么要使用元类?

现在回到我们的大主题上来,究竟是为什么你会去使用这样一种容易出错且晦涩的特性?好吧,一般来说,你根本就用不上它:

“元类就是深度的魔法,99%的用户应该根本不必为此操心。如果你想搞清楚究竟是否需要用到元类,那么你就不需要它。那些实际用到元类的人都非常清楚地知道他们需要做什么,而且根本不需要解释为什么要用元类。”  —— Python界的领袖 Tim Peters

元类的主要用途是创建API。一个典型的例子是Django ORM。它允许你像这样定义:

1
2
3
class Person(models.Model):
    name = models.CharField(max_length=30)
    age = models.IntegerField()

但是如果你像这样做的话:

1
2
guy  = Person(name='bob', age='35')
print guy.age

这并不会返回一个IntegerField对象,而是会返回一个int,甚至可以直接从数据库中取出数据。这是有可能的,因为 models.Model定义了__metaclass__, 并且使用了一些魔法能够将你刚刚定义的简单的Person类转变成对数据库的一个复杂hook。Django框架将这些看起来很复杂的东西通过暴露出一个 简单的使用元类的API将其化简,通过这个API重新创建代码,在背后完成真正的工作。

 

结语

首先,你知道了类其实是能够创建出类实例的对象。好吧,事实上,类本身也是实例,当然,它们是元类的实例。

1
2
3
>>>class Foo(object): pass
>>> id(Foo)
142630324

Python中的一切都是对象,它们要么是类的实例,要么是元类的实例,除了type。type实际上是它自己的元类,在纯Python环境中这可 不是你能够做到的,这是通过在实现层面耍一些小手段做到的。其次,元类是很复杂的。对于非常简单的类,你可能不希望通过使用元类来对类做修改。你可以通过 其他两种技术来修改类:

1) Monkey patching

2)   class decorators

当你需要动态修改类时,99%的时间里你最好使用上面这两种技术。当然了,其实在99%的时间里你根本就不需要动态修改类 :D

来自 http://blog.jobbole.com/21351/


五分钟理解元类(Metaclasses
真的,它并非巫术。


原文地址:http://www.voidspace.org.uk/python/articles/five-minutes.shtml
日期:16 September, 2008.
译者:赖勇浩(http://blog.csdn.net/lanphaday
 “元类的魔幻变化比 99% 的用户所担心的更多,当你搞不懂是否真的需要用它的时候,就是不需要。”
—Tim Peters
本文源于在 PyCon UK 2008 上的一个快速演讲。
元类被称为 Python 中的“深奥的巫术”。尽管你需要用到它的地方极少(除非你基于 zope编程),可事实上它的基础理论其实令人惊讶地易懂。
一切皆对象

  • 一切皆对象
  • 一切都有类型
  •  “class”和“type”之间本质上并无不同
  • 类也是对象
  • 它们的类型是 type
以前,术语 type 用于内置类型,而术语 class 用于用户定义的类,但自 Pythoon 2.2 以来“class”和“type”本质上并无不同。
对于旧风格(old-style)类的类型是 types.ClassType。
真的,这是真的
Python 2.5.1 (r251:54869, Apr 18 2007, 22:08:04)
>>> class Something(object):
...     pass
...
>>> Something
<class '__main__.Something'>
>>> type(Something)
<type 'type'>
从这里可以看出在交互式解释器中创建的类是一个 first class 的对象。
类的类是……
它的元类……
就像对象是类的实例一样,类是它的元类的实例。
调用元类可以创建类。
确切来说,Python 中的其它对象也是如此。
因此当你创建一个类时……
解释器会调用元类来生成它……
定义一个继承自 object 的普通类意味着调用 type 来创建它:
>>> help(type)
Help on class type in module __builtin__:
 
class type(object)
 |  type(object) -> the object's type
 |  type(name, bases, dict) -> a new type
type 的第二种用法尤为重要。当 Python 解释器在执行一条类定义语句时(如例子中最初的两行代码之后),它会用下面的参数调用 type:
  • 字符串形式的类名
  • 元组形式的基类序列——在我们的例子中是只有一个元素的元组(’one-pl’)[1],如(object,)。
  • 包括由名字影射的类成员(类属性、方法等)的字典
简单模拟
>>> def __init__(self):
...     self.message = 'Hello World'
...
>>> def say_hello(self):
...     print self.message
...
>>> attrs = {'__init__': __init__, 'say_hello': say_hello}
>>> bases = (object,)
>>> Hello = type('Hello', bases, attrs)
>>> Hello
<class '__main__.Hello'>
>>> h = Hello()
>>> h.say_hello()
Hello World
以上代码创建了类属性的字典,然后调用 type 来创建了名为 Hello 的类。
__metaclass__ 的魔法
只要在类定义中把 __metaclass__ 设置为任意有着与 type 相同参数的可调用对象,就能够提供自定义的元类。
通常使用从 type 继承的方法:
class PointlessMetaclass(type):
    def __new__(meta, name, bases, attrs):
        # do stuff...
        return type.__new__(meta, name, bases, attrs)
重要的是在 __new__ 方法中我们能够读取或改变传入的用以创建新类的参数。从而能够内省属性字典和改动、增加或者删除成员。
尽管当实例化一个类时这两个函数都会被调用,但覆盖 __new__ 比 __init__ 更为重要。__init__ 初始化一个实例,而 __new__ 的职责是创建它。因此如果元类用以自定义类的创建,就需要覆盖 type 的 __new__。
使用新类而非仅仅提供工厂函数的原因在于如果使用工厂函数(那样只是调用 type)的话元类不会被继承。
In Action...
>>> class WhizzBang(object):
...     __metaclass__ = PointlessMetaclass
...
>>> WhizzBang
<class '__main__.WhizzBang'>
>>> type(WhizzBang)
<class '__main__.PointlessMetaClass'>
WhizzBang 是一个类,但它现在已经不是 type 的实例,而是我们自定义的元类的实例了……
这有什么用?
很好的问题,元类将用在创建使用了它的新类时调用,这里是一些关于这样做的好处的观点:
  • 装饰(Decorate)类的所有方法,用以日志记录或者性能剖分。
  • 自动 Mix-in 新方法
  • 在创建时注册类。(例如自动注册插件或从类成员创建数据库模式。)
  • 提供接口注册,功能自动发现和接口适配。
  • 类校验:防止子类化,校验所有的方法是否都有 docstrings。
最重要之处在于元类中是在最后对 type 的调用时才真正创建类,所以可以自由地随你喜欢地改变属性字典(以及名称和元组形式的基类序列)。
一些流行的 Python ORM(Object Relational Mappers(对象关系影射),用以和数据库协同工作)也如此使用元类。
哦,还有因为元类是继承的,所以你能够提供一个使用了你的元类的基类,而继承自它的子类就无需显式声明它了。
但是……
我曾未需要使用它来编写代码……(我们用它来剖分,也在 Ironclad 项目广泛应用它,但我不编写这些)。
还有,这一切只适用于 Python 2.x,其中的机制在 Python 3 中已经改变了。
type(type) is type
在 Python 2.6 中现在也可用使用  class decorators 来实现许多以前可能需要用元类来实现的东西。
最后,还有一个极尽奇技淫巧的例子(稍为深入,但仍然不难消化),可以去看看 The Selfless Metaclass。它通过字节码和方法签名重写来避免显式地声明 self 

来自 http://blog.csdn.net/gzlaiyonghao/article/details/3048947

 

普通分类: