欢迎各位兄弟 发布技术文章

这里的技术是共享的

You are here

python

获取对象信息

当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢?

使用type()

首先,我们来判断对象类型,使用type()函数:

基本类型都可以用type()判断:

>>> type(123)
<class 'int'>
>>> type('str')
<class 'str'>
>>> type(None)
<type(None) 'NoneType'>

如果一个变量指向函数或者类,也可以用type()判断:

普通分类: 

继承和多态

在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。

比如,我们已经编写了一个名为Animal的class,有一个run()方法可以直接打印:

class Animal(object):
    def run(self):
        print('Animal is running...')

当我们需要编写DogCat类时,就可以直接从Animal类继承:

普通分类: 

访问限制

在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑。

但是,从前面Student类的定义来看,外部代码还是可以自由地修改一个实例的namescore属性:

>>> bart = Student('Bart Simpson', 98)
>>> bart.score
98
>>> bart.score = 59
>>> bart.score
59

如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:

普通分类: 

类和实例

面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可能不同。

仍以Student类为例,在Python中,定义类是通过class关键字:

class Student(object):
    pass

class后面紧接着是类名,即Student,类名通常是大写开头的单词,紧接着是(object),表示该类是从哪个类继承下来的,继承的概念我们后面再讲,通常,如果没有合适的继承类,就使用object类,这是所有类最终都会继承的类。

定义好了Student类,就可以根据Student类创建出Student的实例,创建实例是通过类名+()实现的:

普通分类: 

面向对象编程

面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。

面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行。为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度。

而面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。

在Python中,所有数据类型都可以视为对象,当然也可以自定义对象。自定义的对象数据类型就是面向对象中的类(Class)的概念。

我们以一个例子来说明面向过程和面向对象在程序流程上的不同之处。

假设我们要处理学生的成绩表,为了表示一个学生的成绩,面向过程的程序可以用一个dict表示:

std1 = { 'name': 'Michael', 'score': 98 }
std2 = { 'name': 'Bob', 'score': 81 }

而处理学生成绩可以通过函数实现,比如打印学生的成绩:

普通分类: 

安装第三方模块

在Python中,安装第三方模块,是通过包管理工具pip完成的。

如果你正在使用Mac或Linux,安装pip本身这个步骤就可以跳过了。

如果你正在使用Windows,请参考安装Python一节的内容,确保安装时勾选了pipAdd python.exe to Path

在命令提示符窗口下尝试运行pip,如果Windows提示未找到命令,可以重新运行安装程序添加pip

注意:Mac或Linux上有可能并存Python 3.x和Python 2.x,因此对应的pip命令是pip3

普通分类: 

使用模块

Python本身就内置了很多非常有用的模块,只要安装完毕,这些模块就可以立刻使用。

我们以内建的sys模块为例,编写一个hello的模块:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

' a test module '

__author__ = 'Michael Liao'

import sys

def test():
    args = sys.argv
    if len(args)==1:
            print('Hello, world!')
    elif len(args)==2:
        print('Hello, %s!' % args[1])
    else:
        print('Too many arguments!')

if __name__=='__main__':
    test()

第1行和第2行是标准注释,第1行注释可以让这个hello.py文件直接在Unix/Linux/Mac上运行,第2行注释表示.py文件本身使用标准UTF-8编码;

普通分类: 

模块

在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护。

为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式。在Python中,一个.py文件就称之为一个模块(Module)。

使用模块有什么好处?

最大的好处是大大提高了代码的可维护性。其次,编写代码不必从零开始。当一个模块编写完毕,就可以被其他地方引用。我们在编写程序的时候,也经常引用其他模块,包括Python内置的模块和来自第三方的模块。

使用模块还可以避免函数名和变量名冲突。相同名字的函数和变量完全可以分别存在不同的模块中,因此,我们自己在编写模块时,不必考虑名字会与其他模块冲突。但是也要注意,尽量不要与内置函数名字冲突。点这里查看Python的所有内置函数。

你也许还想到,如果不同的人编写的模块名相同怎么办?为了避免模块名冲突,Python又引入了按目录来组织模块的方法,称为包(Package)。

普通分类: 

偏函数

Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。

在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。举例如下:

int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:

>>> int('12345')
12345

int()函数还提供额外的base参数,默认值为10。如果传入base参数,就可以做N进制的转换:

普通分类: 

装饰器

由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。

>>> def now():
...     print('2015-3-25')
...
>>> f = now
>>> f()
2015-3-25

函数对象有一个__name__属性,可以拿到函数的名字:

>>> now.__name__
'now'
>>> f.__name__
'now'

现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。

本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:

普通分类: 

匿名函数

当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便。

在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算f(x)=x2时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:

>>> list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
[1, 4, 9, 16, 25, 36, 49, 64, 81]

通过对比可以看出,匿名函数lambda x: x * x实际上就是:

def f(x):
    return x * x

关键字lambda表示匿名函数,冒号前面的x表示函数参数。

匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。

普通分类: 

返回函数

函数作为返回值

高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。

我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:

def calc_sum(*args):
    ax = 0
    for n in args:
        ax = ax + n
    return ax

但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:

def lazy_sum(*args):
    def sum():
        ax = 0
        for n in args:
            ax = ax + n
        return ax
    return sum

当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:

普通分类: 

sorted

排序算法

排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。

Python内置的sorted()函数就可以对list进行排序:

>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]

此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:

>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]

key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list:

普通分类: 

filter

Python内建的filter()函数用于过滤序列。

map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

def is_odd(n):
    return n % 2 == 1

list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:

普通分类: 

map/reduce

Python内建了map()reduce()函数。

如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念。

我们先看map。map()函数接收两个参数,一个是函数,一个是Iterablemap将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:

普通分类: 

高阶函数

高阶函数英文叫Higher-order function。什么是高阶函数?我们以实际代码为例子,一步一步深入概念。

变量可以指向函数

以Python内置的求绝对值的函数abs()为例,调用该函数用以下代码:

>>> abs(-10)
10

但是,如果只写abs呢?

>>> abs
<built-in function abs>

可见,abs(-10)是函数调用,而abs是函数本身。

要获得函数调用结果,我们可以把结果赋值给变量:

>>> x = abs(-10)
>>> x
10

但是,如果把函数本身赋值给变量呢?

普通分类: 

函数式编程

函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。函数就是面向过程的程序设计的基本单元。

而函数式编程(请注意多了一个“式”字)——Functional Programming,虽然也可以归结到面向过程的程序设计,但其思想更接近数学计算。

我们首先要搞明白计算机(Computer)和计算(Compute)的概念。

在计算机的层次上,CPU执行的是加减乘除的指令代码,以及各种条件判断和跳转指令,所以,汇编语言是最贴近计算机的语言。

而计算则指数学意义上的计算,越是抽象的计算,离计算机硬件越远。

对应到编程语言,就是越低级的语言,越贴近计算机,抽象程度低,执行效率高,比如C语言;越高级的语言,越贴近计算,抽象程度高,执行效率低,比如Lisp语言。

函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。

普通分类: 

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

普通分类: 

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

普通分类: 

列表生成式

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))

>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

>>> L = []
>>> for x in range(1, 11):
...    L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

普通分类: 

迭代

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

在Python中,迭代是通过for ... in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:

for (i=0; i<list.length; i++) {
    n = list[i];
}

可以看出,Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

普通分类: 

切片

取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:

>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']

取前3个元素,应该怎么做?

笨办法:

>>> [L[0], L[1], L[2]]
['Michael', 'Sarah', 'Tracy']

之所以是笨办法是因为扩展一下,取前N个元素就没辙了。

取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:

>>> r = []
>>> n = 3
>>> for i in range(n):
...     r.append(L[i])
... 
>>> r
['Michael', 'Sarah', 'Tracy']

对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。

普通分类: 

高级特性

掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。

比如构造一个1, 3, 5, 7, ..., 99的列表,可以通过循环实现:

L = []
n = 1
while n <= 99:
    L.append(n)
    n = n + 2

取list的前一半的元素,也可以通过循环实现。

但是在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。

基于这一思想,我们来介绍Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。

普通分类: 

递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:

fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n

所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。

于是,fact(n)用递归的方式写出来就是:

def fact(n):
    if n==1:
        return 1
    return n * fact(n - 1)

上面就是一个递归函数。可以试试:

普通分类: 

函数的参数

定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

位置参数

我们先写一个计算x2的函数:

def power(x):
    return x * x

对于power(x)函数,参数x就是一个位置参数。

当我们调用power函数时,必须传入有且仅有的一个参数x

普通分类: 

定义函数

在Python中,定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。

我们以自定义一个求绝对值的my_abs函数为例:

def my_abs(x):
    if x >= 0:
        return x
    else:
        return -x

请自行测试并调用my_abs看看返回结果是否正确。

请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。

如果没有return语句,函数执行完毕后也会返回结果,只是结果为None

return None可以简写为return

普通分类: 

调用函数

Python内置了很多有用的函数,我们可以直接调用。

要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数abs,只有一个参数。可以直接从Python的官方网站查看文档:

http://docs.python.org/3/library/functions.html#abs

也可以在交互式命令行通过help(abs)查看abs函数的帮助信息。

调用abs函数:

>>> abs(100)
100
>>> abs(-20)
20
>>> abs(12.34)
12.34

调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且Python会明确地告诉你:abs()有且仅有1个参数,但给出了两个:

普通分类: 

函数

我们知道圆的面积计算公式为:

S = πr2

当我们知道半径r的值时,就可以根据公式计算出面积。假设我们需要计算3个不同大小的圆的面积:

r1 = 12.34
r2 = 9.08
r3 = 73.1
s1 = 3.14 * r1 * r1
s2 = 3.14 * r2 * r2
s3 = 3.14 * r3 * r3

当代码出现有规律的重复的时候,你就需要当心了,每次写3.14 * x * x不仅很麻烦,而且,如果要把3.14改成3.14159265359的时候,得全部替换。

有了函数,我们就不再每次写s = 3.14 * x * x,而是写成更有意义的函数调用s = area_of_circle(x),而函数area_of_circle本身只需要写一次,就可以多次调用。

基本上所有的高级语言都支持函数,Python也不例外。Python不但能非常灵活地定义函数,而且本身内置了很多有用的函数,可以直接调用。

普通分类: 

使用dict和set

dict

Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:

names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]

给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。

如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

普通分类: 

循环

循环

要计算1+2+3,我们可以直接写表达式:

>>> 1 + 2 + 3
6

要计算1+2+3+...+10,勉强也能写出来。

但是,要计算1+2+3+...+10000,直接写表达式就不可能了。

为了让计算机能计算成千上万次的重复运算,我们就需要循环语句。

Python的循环有两种,一种是for...in循环,依次把list或tuple中的每个元素迭代出来,看例子:

names = ['Michael', 'Bob', 'Tracy']
for name in names:
    print(name)

执行这段代码,会依次打印names的每一个元素:

Michael
Bob
Tracy

所以for x in ...循环就是把每个元素代入变量x,然后执行缩进块的语句。

再比如我们想计算1-10的整数之和,可以用一个sum变量做累加:

普通分类: 

页面

Subscribe to RSS - python